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GyroPen: Gyroscopes for Pen-Input
with Mobile Phones

Thomas Deselaers, Daniel Keysers, Jan Hosang, Henry A. Rowley

Abstract—We present GyroPen, a method to reconstruct the
motion path for pen-like interaction from standard built-in
sensors in modern smartphones. The key idea is to reconstruct
a representation of the trajectory of the phone’s corner that is
touching a writing or drawing surface from the measurements
obtained from the phone’s gyroscopes and accelerometers. We
propose to directly use the angular trajectory for this recon-
struction, which removes the necessity for accurate absolute 3D
position estimation, a task that can be difficult using low-cost
accelerometers. We connect GyroPen to a handwriting recog-
nition system and perform two proof-of-concept experiments
to demonstrate that the reconstruction accuracy of GyroPen is
accurate enough to be a promising approach to text entry. In a
first experiment, the average novice participant (n “ 10) was able
to write the first word only 37 seconds after the starting to use
GyroPen for the first time. In a second experiment, experienced
users (n “ 2) were able to write at the speed of 3-4s for one
English word and with a character error rate of 18%.

I. INTRODUCTION

Small (touch-)screen areas on mobile devices often limit their
capabilities for user interaction. In this paper we present
GyroPen, a method that brings an experience similar to
“drawing with a pen” to mobile devices without using a stylus
and without the space restrictions typically imposed by a
small form factor. The user can hold the mobile phone like
a pen and “write” on any surface (Fig. 1). The trajectory
of the phone’s “writing corner” is reconstructed from the
phone’s sensors: its gyroscopes and accelerometers. Because
the proposed method does not require to use a touchscreen, it
is particularly appealing for small form factor devices or for
devices lacking a screen.

A promising application of GyroPen’s capabilities is as
a method for text entry. Text entry on mobile devices is a
topic of interest as mobile devices are getting more popular:
entering text on mobile devices is still considered inconvenient
by many, although a large variety of input methods have
been proposed since the first mobile phones. 12-button phones
with predictive text-entry methods (e.g. [1]) have mostly been
replaced by touchscreen devices with soft-keyboards. These
devices however suffer from the “fat finger problem”, i.e. the
fact that a human finger is thicker than a typical key on the
virtual keyboard [2] and thus methods for automatic prediction
and correction were added, e.g. in the form of gesture-based
systems for keyboard entry, e.g. SHARK [3], ShapeWriter [4],
and SwiftKey [5]. One of the alternative means of text entry
is handwriting, which works naturally with GyroPen input.
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Fig. 1. GyroPen provides a similar experience for writing with a phone as
writing with a pen.

II. RELATED WORK

The idea to use inertial sensors for interaction with mobile
devices in general and for text entry in particular has been
discussed in the literature before. One of the first reports is [6]
in which a pen-device with two accelerometers constructed
for the task is combined with a specifically developed writer-
dependent HMM recognizer to recognize one of a fixed set of
seven words. [7] discusses a similar setup to distinguish ten
numerals.

The TiltText approach [8] uses movements of the cell
phone to disambiguate among multiple text-candidates when
entering text on a 12-button keypad using a low-cost tilt
sensor. Similarly Shrimp [9] aims at easing text entry, but
instead of relying on a tilt sensor it uses the phone’s camera
to estimate its motion using computer vision. Additionally
Shrimp improves on the text prediction to allow for entering
out-of-vocabulary words more easily.

WalkType [10] helps users to type on a touchscreen while
walking. It uses accelerometer data to predict and account
for misplaced touch events and corrects the user input with
a language model and a model of common typing errors.

Gomez et al. [11] propose a Dasher-like [12] system for
text entry controlled by accelerometers.

Approaches that are closely related to ours are PhonePoint-
Pen [13] and Airwriting [14]. These systems allow a user to
write in the air similar to the process of writing on a black-
board, which requires the user to make fairly large writing
gestures in contrast to the small movements required in our
approach. Both PhonePoint-Pen and Airwriting use dedicated
handwriting recognition systems built for motion-based input.
In contrast, our system uses an “off-the-shelf” handwriting
recognition system leveraging the efforts of the handwriting
recognition community over several decades without further
modifications. This is possible because the reconstructed writ-
ing paths of our system match how users write with a pen on
paper. This has the advantage that recognition can easily be
extended to more languages, scripts, and symbols by replacing
the recognition backend.

PhonePoint-Pen uses only the accelerometers of a mobile
phone and the recognizer is comprised of a manually en-
gineered decision tree and language-model-based correction
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to disambiguate likely character confusions. PhonePoint-Pen
does not distinguish letter case but supports three editing ges-
tures and numerals. Average character writing times between
3.0 and 4.3 seconds are reported (n “ 10) and a character error
rate of 8.1% for trained users (n “ 4) and single character
input (with the note that “recognition degrades with increasing
word-length”). Reference [13] also includes a more in-depth
discussion of further related work in this area.

In Airwriting, a specialized motion-sensing device with
gyroscopes and accelerometers is attached to the user’s wrist.
An HMM-based system is trained on raw sensor data, i.e. the
motion path is not reconstructed. A user-independent word
error rate of 11% for a fixed vocabulary of 8K words is
reported (n “ 9) [14] for this specific data. The task-dependent
training of the Airwriting system requires a sufficient amount
of annotated motion data. In contrast, our approach can
directly benefit from improvements in normal handwriting
systems and thus is easy to extend to new languages.

Miyagawa et al. [15] present a basic system that uses both
accelerometers and gyroscopes attached to a pen to reconstruct
short writing paths in 3D, but do not evaluate the results
quantitatively or specifically for text-entry.

An approach that is similar to ours is the Magic Wand
system [16], [17]. The device described in [16] uses both ac-
celerometers and gyroscopes and is specifically constructed to
allow 3D trajectory reconstruction. In contrast to our approach,
the gyroscopes are mainly used to compensate for gravity and
attitude (compare Sec. IV), not directly for the estimation
of the writing path (our approach to do so is described in
Sec. V). The writing plane is estimated from the 3D motion
of the device and the trajectory is projected onto that plane.
In contrast, GyroPen supports the use of angular movement
only, as it occurs when writing with a pen while resting
the palm on a surface. In [16] no recognition is performed
but 26+10 Graffiti-style symbols can be distinguished by a
human observer from the reconstructed paths. [17] describes
an extension in form-factor and a direct integration into a
specifically designed gesture recognition system. On a set of
13 gestures designed for easy discrimination by the system,
error rates of below 1% are reported (n “ 15).

The ImuPen [18] similarly estimates motion by double in-
tegration of acceleration information with elaborate additional
signal processing stages. For writing on a surface, an error rate
of 9.6% for a 10-class digit recognition problem is reported in
comparison to 2.8% when a digitizer tablet is used. This error
rate dropped to 5.4% for writing on an unrestricted surface.

Regarding mobile handwriting recognition in general, it
was already available on the Apple Newton [19] but did not
become popular until the simplified writing system Graffiti on
Palm Pilots [20] and its extensions [21], [22] were available.
In modern smart phones and tablets, several handwriting input
methods exist [23], [24], [25].

III. SENSORS

Modern cellphones typically contain three types of motion
and orientation sensors: accelerometers, gyroscopes, and a
magnetometer.

The accelerometer measures the acceleration of the phone
in three dimensions (or, equivalently, the forces acting on

the phone). One main component of the measured accel-
eration is caused by gravitational forces. Additionally, the
accelerometer measures any force applied to the phone that
results in acceleration. Accelerometers have been built into
smart phones for several years, e.g. the first Android phone
and the original iPhone already had accelerometers. Most
accelerometers built into current devices use the piezoelectric
effect. The measurements of an accelerometer are given in m

s2 .
The gyroscope measures rotation about its own three axes.

Gyroscopes only became popular in smart phones around the
year 2010, e.g. the Nexus S and the iPhone 4 have built-in
gyroscopes. Most gyroscopes built into current smart phones
use an oscillator to measure the Coriolis effect. The gyroscope
measures angular velocity in rad

s .
The magnetometer can be considered a 3D compass that

measures the direction of the magnetic field at the current
location. Magnetometers have also been built into mobile
phones since the first generation of smart phones. Most
magnetometers in cell phones directly measure the magnetic
field using the Hall effect. Unfortunately (for the use in
low-latency applications) magnetometers are often slow. The
measurements of a magnetometer are given in µT .

In our approaches described below we generally poll the
measurements of all sensors with a frequency of about 150Hz
which we found to be sufficient to capture writing movements
while balancing the tradeoff for low energy consumption.

IV. ACCELEROMETER-BASED APPROACH

The first approach to reconstructing the motion of a mobile
phone that comes to mind uses the accelerometers and (double)
integrates over their measurements.

The accelerometer measures the acceleration of the phone
in three dimensions a “ pax, ay, azq. When the phone is
held still with respect to the user in static conditions, the
accelerometers only measure gravity g “ pgx, gy, gzq, which
is typically |g| “ 9.81m

s2 . Once the gravity is estimated, the
vector a can be rotated into a vector a1 “ pa1x, a

1
y, a

1
zq, where

the z-axis points in the opposite direction of the gravity and
thus the directions of ax and ay are parallel to the desired
horizontal writing plane. Thus, discarding the z component
after rotation effectively eliminates g, which is usually the
strongest force in the accelerometer measurements.

With these rotated observations, we start from a hypothetical
starting point px0, y0q and compute the position pxN , yN q of
the phone after N sensor readings as

pxN , yN q “ px0, y0q `
N
ÿ

n“1

∆tnpvnx, vnyq (1)

with

pvnx, vnyq “ p0, 0q `
n
ÿ

i“1

∆tipa
1
ix, a

1
iyq. (2)

where ∆tn is the time that passed between measurements
n ´ 1 and n. While this approach is appealing in theory,
it turns out that in practice the double integral (or sum)
is very sensitive to noise and the sensors built into current
phones are often too noisy to give sufficiently precise readings
for accurate estimation of a writing path. Airwriting [14]
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(a) (b)

Fig. 2. Writing with the phone. (a) The hand is holding the phone like a pen.
To determine which words the user writes, we measure the rotation around
point C and estimate at which point W the phone touches the writing surface.
(b) Simplified to two dimensions, the writing point W moves as the phone
rotates and translates.

avoids this problem by (a) not reconstructing the writing path
explicitly but training the handwriting recognizer on sensor
data directly and (b) using a high-accuracy sensor unit which is
more expensive than the manufacturing price of current smart-
phones.

V. GYROPEN: GYROSCOPE-BASED APPROACH

GyroPen allows for writing with the phone like a user normally
would write with a pen1. Most movements of a pen while
writing are performed without actually moving the entire hand.
Instead, the writing motion of the pen tip results from moving
the pen using mostly finger and wrist movements. This motion
consists to a large part of rotations. Then, occasionally the
entire hand is moved by just a few centimeters, e.g. to start a
new word or line.

GyroPen uses the phone’s gyroscopes to estimate the mo-
tion of the writing point. The gyroscopes directly measure
angular velocity about three axes r “ prx, ry, rzq and thus
a single integration will be sufficient to determine how far
the phone was rotated. Starting from an initial attitude of
the phone o0 “ po0x, o0y, o0zq, which is initialized from a
gravity estimate while the phone is held still, we update the
attitude estimate by rotating it according to the gyroscope
measurements.

The motion of the phone’s writing point W is approximated
by assuming that the overall motion consists of a rotation
around a fixed virtual center point C and a translation of the
pen along the line C-W such that W continuously touches
the surface (Fig. 2). For different users the point C may be
at different locations depending on how they hold the phone.
Considering the 2D case in Fig 2b, the user rotates the phone
such that the writing point W moves from W0 to Wt and
continuously shifts the phone such that W touches the writing
surface. Under these assumptions, the phone’s attitude (as
determined from the gyroscopes) is sufficient to determine the
writing motion trajectory from W0 to Wt. During writing, the
position of C may vary, but for smooth motion this will not
lead to large distortions.
g is the direction of gravity and we assume the distance

between points B and C (the distance of C from the writing
surface) to be approximately 5cm. Note that the exact distance
between these points does not influence the nature of the
recorded handwriting but only changes a fixed scaling factor

1See the video in our supplementary material for a comparison how a user
writes with a pen and with GyroPen.
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rx ry rz
Fig. 3. Measurements from the gyroscope while performing different writing
strokes in rad

s
over time. (a) “left to right” (b) “right to left” (c) “bottom up”

(d) “top down” (e) “circle” (f) “pen up”.

that is applied to the reconstructed trajectory. The handwriting
system may later apply an extra size normalization (we do
not pass on any writing area sizes) and thus the recognition
accuracy is invariant with respect to the writing size (Sec. V-F).

Note that this approach can be extended to larger move-
ments typical for say writing with a laser pointer (Sec. V-E).
It also works well when restricting the writing to a very small
area: restricting the writing area to a band of height 5mm was
found to be unproblematic for recognition.

A. Initialization

For initialization we determine the initial attitude o0 of the
phone while it is not moving using the accelerometer. We
estimate gravity g from N accelerometer measurements while
the phone is not moving which gives us a reliable estimate of
our initial attitude o0 (up to a rotation about the vertical axis).
During the implementation of the system we experimented
with different values for N and found that N “ 10 is a suitable
choice. This means that the initialization only takes a fraction
of a second and it is a good compromise between a stable
estimate for gravity and waiting for the initialization.

B. Tracking movements

To update the phone’s attitude as it rotates we use the gy-
roscope measurements. From the sequence of phone attitudes
we compute the trajectory of the phone’s writing point W on
the writing surface.

We use quaternions as a convenient way to describe and
work with rotations in 3D space. When we say that we update
an attitude o1 using an angular velocity r, we first determine
the angle Qp∆t ¨ rq by which the phone was rotated from r
and the time ∆t corresponding to this measurement. Then, we
compute the updated attitude o2 by rotating o1 by that angle

o2 “ o1 ˚Qp∆t ¨ rq. (3)

where ˚ is the quaternion multiplication which corresponds to
rotating o1 by the angle ∆t ¨ r.

This is performed for every measured angular velocity rt
successively. Then we compute the location at which point W
touches the writing surface for every time step t, assuming
the writing surface is orthogonal to the gravity vector g and
cutting it at point B.

Figure 3 shows the output of the gyroscope sensor while
different writing movements are performed. It can clearly
be seen that writing into different directions creates distinct
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Fig. 4. Examples of writing the words “hello” (top row) and “it” (bottom
row). left: gyroscope measurements (cp. Fig. 3); right: reconstructed writing
path.

gyroscope measurements. However, it is also clearly visible
that raising the writing point W above the writing surface
(Fig. 3(f)) has a very similar pattern to a “right to left”
movement (Fig. 3(b)). In both cases, the rx value goes up
strongly and stays high for the entire movement, the ry and rz
values show a wave pattern. The biggest difference between
these two movements in our plots is the magnitude of the
measurements which is not intrinsic to the movement direction
but only depends on the movement speed. Therefore, we
decided not to handle “pen up” movements explicitly but trace
the movements over the entire time and handle the “pen up”
strokes (i.e. the strokes that were reconstructed but which are
not intentionally written strokes) at a later stage.

Fig. 4 shows examples of reconstructed writing paths for
the two words “hello” and “it”, both of which are legible to
humans. In the path for “it”, the pen-up problem is clearly
visible: the delayed strokes (i.e. the t-stroke and the i-dot) are
connected to the previously written strokes.

C. New-word heuristic

With the method described above it is possible to write in an
area of about 7x5cm without moving the hand on the writing
surface. This area is sufficiently large to allow for writing sizes
similar to results of writing with a pen on paper. When writing
with a pen, a user occasionally moves their hand forward to be
able to keep writing in a line. Here, moving the hand forward
is not necessary. Instead, the hand can remain at the same spot
while writing multiple words (or word-parts) on top of each
other: when the end of a word is reached, the user lifts the
writing corner, moves it to the left, and then writes the next
word “over” the previous one.

To detect this restart gesture we apply a straightforward
decision rule based on the measurement rx of the gyroscope
of rotation around the phone’s x-axis, where the combined
signals for “pen up” (Fig. 3(f)) and “right to left” (Fig. 3(b))
leads to a characteristic pattern (Fig. 5) which allows detection
of the restarts and segmentation of the writing into three parts:
wi the first word, ξi the restart gesture which is discarded, and
wi`1 the second word.
wi contains all sensor measurements from the beginning

(or from the end of ξi´1) until rx exceeds a threshold θu.
Starting from there, all observations that exceed a threshold
θl are considered to be part of the restart gesture ξi and once
the rx drops below threshold θl the next word wi`1 starts.
The thresholds were chosen to be θu “ 0.6 and θl “ 0.2 from
analyzing multiple graphs similar to Fig. 5 during the initial
implementation of this method and ahead of any of our user
studies.

-1
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1s 2s 3s 4s 5s
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d
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Fig. 5. The sensor output of the gyroscope rx when writing the word
“google”, then moving the phone back to the beginning, and then writing
“apple” at the same location and the reconstructed writing path. The colors
encode the recognized words: w1 in red, the restart gesture ξ1 in green, and
w2 in blue. In gray, the gyroscope reading for ry and rz .

(a) (b) (c) (d)

Fig. 6. Postprocessing steps. Writing paths from two different users going
through the post-processing pipeline: (a) reconstructed writing path; (b) after
start-stop detection; (c) after slope correction; (d) after slant correction.

D. Postprocessing
After the writing path has been reconstructed, we perform
several post-processing steps to make the recovered writing
paths more similar to normal handwriting and to reduce
differences between the writing styles of different users.

1) Start/stop detection: Our system requires the phone to
be held still while the gravity vector is estimated, but holding
the pen stationary is unusual in handwriting data. Similarly,
the end of the input is signaled by holding the phone still for
half a second. Removing these pauses in the phone motion
improves handwriting recognition because it makes the output
of GyroPen more like normal handwriting input for which the
handwriting recognition system was optimized.

For start-detection, we drop all observations until the dis-
tance between two consecutive points exceeds a threshold θs.
For the stop-detection, we wait until the phone has been still
for half a second by detecting that no two consecutive points
have a distance exceeding the threshold θs “ 0.04 for 500ms.

While the difference is not visually apparent (Fig. 6(a)
and (b)), the start-stop detection removes between 10 and 50
similar points on most samples at the beginning and end.

2) Slope correction: Due to different users holding the
phone at different angles, the recovered writing paths have
different slopes (Fig. 6(b)).

To improve recognition, we normalize the slope by measur-
ing the angle φw between the first and the last point of each
written word w; averaging over the written words; and rotating
the words toward the horizontal by this angle (Fig. 6(c)).
Note that this heuristic is very simplistic and more elaborate
techniques are likely to further improve the accuracy of the
overall system (see Fig. 11).

3) Slant correction: After the slope correction, we apply
a slant correction to normalize the writing paths. In normal
handwriting of Latin-script languages, the most common di-
rections are vertical (or near-vertical) strokes, such as the
letter “I” or the first and the last part of the letter “M”.
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(a)
(b)

Fig. 7. (a) Laser pointer mode and (b) examples of uppercase letters written
using the laser pointer mode.

Also here, different users tend to write with different slants
(Fig. 6(c)). In order to normalize for slant, we compute a
histogram of directions for each stroke by computing the deltas
between every pair of points between pen-down and pen-up
events, determine the dominant direction and then apply a
shear transform to align it to the vertical (Fig. 6(d)).

E. Laser pointer mode
One further advantage of the gyroscope-based approach is
that it easily transfers to a “laser pointer”-like writing mode
where we assume the writing point W to be on the extension
of the phone’s longer dimension (Fig. 7a). In this case, the
hypothetical distance between the points C and the point W
determines the scale factor of the trajectory.

This mode turns out to be useful for interaction with home
cinema systems, similar to the touch pad on recent Sony
settop boxes [26], and the phone motion can either be used to
control a cursor or to handwrite characters. Handwriting can
be activated by pressing and holding a button (physical or on
the touchscreen), similar to the interaction model of a laser
pointer. Fig. 7b shows one example of each of the 26 English
uppercase letters written using the laserpointer mode.

F. Handwriting recognition
To recognize the written items, we use an online handwriting
recognition system similar to the one used in the Apple
Newton [19] but using an extended feature set similar to the
NPen++ recognizer [27]. In online handwriting recognition,
the input to the system is a trajectory of px, yq coordinates
over time t. The handwriting recognition engine used was
built for normal online handwriting data aiming to recognize
stylus input and writing with a finger on a touchscreen. Its
recognition accuracy is comparable to other state-of-the-at
online handwriting recognition systems. Note, that in contrast
to other systems (e.g. 8000 words in [14], 13 gestures in
[17]) the handwriting recognition system is an open vocabulary
recognizer that can recognize any word that can be written
with its alphabet independently of whether it is a proper word
and whether the system has ever seen it in the past. To evaluate
this, we tried to write the authors’ last names and found this
to be easily possible.

Above we mentioned that GyroPen does not handle pen-
up movements explicitly but considers them to be part of the
writing motion. To handle such strokes, the online handwriting
recognition literature has been using pen-up strokes as part of

the observation [27]. Pen-up strokes also have been used as
a means to make models for Chinese handwriting recognition
invariant to printed and cursive writing styles [28].

The handwriting recognition system performs size and
writing-speed normalization and therefore the writing size and
speed of a particular item has no impact on the recognition.

G. Calibration

As every sensor (even of the same type) behaves slightly
differently, we perform a phone-specific calibration. This has
to be performed once per phone and only takes a few minutes.
With this calibration we aim to account for sensor-specific
noise and scale so that we can compute calibrated sensor
readings sc from the raw sensor readings sr and offset O
as sc “ S ¨ sr `O.

For both, the gyroscopes and the accelerometers we want
to compute the calibrated 3-dimensional vectors as

¨

˝

scx
scy
scz

˛

‚“

¨

˝

Sx 0 0
0 Sy 0
0 0 Sz

˛

‚¨

¨

˝

srx
sry
srz

˛

‚`

¨

˝

Ox

Oy

Oz

˛

‚ (4)

In the following we describe how the parameters S and O
are determined for the accelerometers and gyroscopes.

1) Accelerometers: For the accelerometers we can estimate
the offset and the scale jointly. To estimate the offset and
the scale, we record a total of I accelerometer measurements
a1, . . . , aI in at least three different positions while the phone
is not moving. Using the assumption that the phone should
measure an acceleration of g “ 9.81m

s2 while the phone is
still and given our error model (eq. (4)), we can compute the
parameters S and O using a system of 3 ¨ I linear equations

„

aci “ Sari `O

I

i“1

(5)

where we approximate the calibrated measurement as ac “
9.81 ¨ ar{||ar||.

Note that this assumes that the scale for each dimension is
the same and that the offset is small. In practice this is not
always true, but we validated the assumption by estimating
the scale of the axes when the entire gravity components was
on a single axis, which suggested that the approximation is
appropriate.

Then, we solve this system for the entries of the diagonal
matrix S and the offset vector O using the pseudo-inverse of
the expanded equation system.

For the accelerometers of our experiment phones we found
the scale to be in the range between 0.9 and 1.1 and the offset
to be between -0.1m

s2 and 0.1m
s2 .

2) Gyroscopes: To estimate the scale S and the offset O for
the gyroscope we apply a two step procedure: first we estimate
O, then S. For convenience, we change the error model of the
gyroscope to rc “ Sprr ` Oq which is equivalent to eq. (4)
but simplifies notation.

An ideal gyroscope will measure no angular velocity when
not in motion. To estimate the offsets pOx, Oy, Ozq we there-
fore record M gyroscope measurements while holding the
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phone still. Then, we compute the average over these and set
the offset to be

pOx, Oy, Ozq “ ´
1

M

M
ÿ

m“1

prx, ry, rzq. (6)

To compute the scale of the gyroscopes we would ideally
know the output of the gyroscope while the phone performs
a rotation for which we know the ideal output for every step.
We approximate this by asking the user to move the phone
in a series of rotations about each axis in turn, starting and
stopping at the same spot. Then, we record the timestamp pairs
for which the phone has the same attitude as detected using
the phone’s 3D compass.

We record a sequence of I gyroscope r and compass
m measurements pr1,m1q, . . . pri,miq. Then we detect pairs
pi, jq with i ă j where mi “ mj for a pair of time indices.
These pairs represent points where the user has completed a
rotation and is holding the phone still. We know that at these
two time steps, pairs poi, ojq should be identical. oj can be
estimated as (compare with eq. (3))

oj “ oi
j
˚
n“i

Qp∆t ¨ rnq. (7)

This allows us to assess how much our estimated attitudes
oj differ from their expected attitudes oi on average:

ÿ

poi,ojq

dpoi, ojq (8)

where dpoi, ojq measures the angle between oi and oj .
Then, we use the Downhill-Simplex method [29] to mini-

mize eq. (8) starting with an initial identity matrix for Sr.
For the gyroscopes of our experiment phones we found the

scale to be in the range between 0.9 and 1.1 and the offset to
be between -0.01 rad

s and 0.01 rad
s .

3) Evaluating the calibration parameters: We evaluate our
calibration methods by computing the calibration criterion
for two different sets of calibration measurements. For the
accelerometer calibration, the criterion is the sum of squared
error of the system of linear equations (eq. (5)), for the
gyroscopes calibration, the criterion is given in eq. (8).

For the experiments we recorded two calibration measure-
ments for the accelerometer and the gyroscope on different
days. Then we estimated the calibration parameters S and O
independently for the two measurements and evaluated the
criterion on the respective other.

The experiments show that the calibration procedure works
for both accelerometers and gyroscopes (Table I). The esti-
mated calibration parameters for both sequences are signifi-
cantly better (lower) than using no calibration at all (top row).

VI. EVALUATION

For the experiments we used two different devices: a Sam-
sung Galaxy Nexus and a Samsung Nexus S. These contain
an Invensense MPU-3050 motion sensing unit and an EM-
Tech EME1511AFRC module including a motion sensor,
respectively. Both are low-powered motion-sensing units and
during the experiments for the paper we did not observe any
additional power drain on the batteries of the used devices.

TABLE I
QUANTITATIVE EVALUATION OF THE CRITERION. THE CALIBRATION

CRITERION FOR BOTH ACCELEROMETERS AND GYROSCOPES IS GIVEN FOR
TWO MEASUREMENTS. CALIBRATION 1 AND 2 WERE ESTIMATED ON THE

MEASUREMENTS 1 AND 2, RESPECTIVELY.

accelerometer gyroscope
1 2 1 2
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calibration 1 0.179 0.225 0.019 0.0033
calibration 2 0.205 0.190 0.020 0.0021

Fig. 8. Comparison of the reconstructed writing paths and the aligned
groundtruth paths. Red: the reconstructed path from GyroPen, Green: the
groundtruth path from the graphic tablet.

Additionally, we performed informal experiments with four
other popular Android smartphones (LG Nexus 4, Samsung
Galaxy S3, Sony Experia LT26i, HTC One X) to verify that the
proposed methods are not over-optimized for the test devices.
On each of these devices, the GyroPen prototype worked
without any changes.

A. Evaluation of reconstruction accuracy
To evaluate the accuracy of the writing path reconstruction
we performed experiments recording both the reconstructed
writing path as well as the actual writing path of the phone’s
writing point simultaneously. To record the actual writing path,
we used a Wacom Bamboo Pen & Touch graphic tablet and
fixed its stylus to the phone using sticky tape. With this setup
we recorded a dataset of 13 words and drawings2 compared
the reconstructed paths from GyroPen to the groundtruth paths
from the tablet.

To measure the reconstruction error we aligned both paths
using a dynamic programming algorithm similar to the one
used for stereo reconstruction [30] and measured the error
between the reconstructed and the recorded path. The experi-
ments showed an average deviation between our reconstruction
and the ground truth of less than 4% relative (5% standard
deviation) to the length of the path. The highest error was
observed for one of our small drawings where slant correction
went wrong (15%).

Four examples comparing the reconstructed paths are shown
in Fig. 8. For the first three examples, the paths were aligned
very well. In the bottom-right example, the slant correction
built into GyroPen failed because it was designed with hand-
writing in mind and thus the stickfigure drawn with GyroPen
is strongly slanted to the left. Thus, when using GyroPen for
drawing it is advisable to disable the slant correction.

B. User study: learning to use GyroPen
We assessed how quickly a novice user of GyroPen is able to
use it for writing a few simple words in a proof-of-concept
experiment. For this, we conducted a small user study with 10

2apple, C, d, google, hello (3x), programming, house drawing (3x), stick
figure drawing, heart drawing
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Fig. 9. Distribution of (a) writing times (in seconds) and (b) number of
tries necessary until success as box-and-whisker plots. The bold line gives
the median values, the lower and upper boundaries of the box mark the 25%
and 75% quantiles. The whiskers give the minimal and maximal measured
values and the circles mark outliers.

volunteers who had never used the GyroPen prototype before
and had no insight into how it works. The participants, all
employed at the same company as the authors of this paper at
the time of the study, were aged between 20 and 40 years and
both male (9) and female (1). There were 2 left-handed and 8
right-handed participants. The study was conducted using the
following script and lasted about 15 minutes per participant.
The prototype was running on a Samsung Nexus S phone.

‚ Introduction We gave a short introduction how GyroPen
can be used and demonstrated writing a few words.

‚ Writing We asked the users to try to write three strings
of increasing length and difficulty: (1) “and”, (2) “hello”,
(3) “banana”. To get an objective measurement of the
entire system’s performance, we asked the participants
to continue trying to write these strings until the system
recognized the string. We limited the number of tries to
ten times, and recorded the number of tries and the time
it took each participant.

‚ Questions We asked the participants a series of fixed
questions, starting by having them rate the experience
with respect to “interestingness and novelty” on a scale
from 1-10. Then we asked them for positive and negative
adjectives, whether they would install a GyroPen app and
if they saw specific circumstances in which the method
could be particularly useful.

1) Quantitative evaluation: Figure 9 shows the distribution
of writing times and number of tries necessary for the study
participants to write each word. The variation in these mea-
surements is very large. This shows that different users have
a varying degree of difficulty adapting their natural writing
movements.

The average participant was able to write the first short
word after half a minute, then a longer one after about the
same time and then took about one minute to write the six-
letter word “banana”. (The median times are 36.5s, 35.5s, and
58.0s, respectively.)

The median number of tries for each test word were 3.5, 2,
and 4, respectively. This suggests that the participants got used
to this new way of writing quickly and could write the second
word with few attempts, but then needed more attempts for the

third, longer (and probably also harder to recognize) word.
Note that these times are measured up to the point that the

trajectory could be interpreted correctly by the handwriting
recognition system – the reconstructed and visualized text
was readable for a human typically much earlier. The median
number of tries until a human could read the test words was
1.5, 1.0, and 2.5 (compared to 3.5, 2.0, and 4.0 which we
report for machine recognition, Fig. 9). This means that when
used for the purpose of just taking a note in a graphical
format (just storing the sketch, not requiring recognition) the
approach could deliver results much faster than the values
above suggest (compare also the study in Sec. VI-C which
shows that experienced users need 3-4s to write a word).

The outliers towards the longer times and number of tries
show that this input method will probably not be the method of
choice for fast text entry for everybody, but similar restrictions
apply for other input methods, like e.g. speech input or
handwriting using a stylus.

On the other hand, some participants were able to input the
desired word very quickly and with only few attempts. This is
despite the fact that most of the participants started the study
with stating that they had a “terrible handwriting”.

In summary, we consider the results of this experiment to
be very promising since they indicate that new users will be
able to use GyroPen quickly and without much help. For more
reliable results it would be necessary to perform a large study
with more users and more words.

2) Qualitative evaluation: The study participants rated
the interestingness and novelty of the approach on average
(mean=median) with a score of 8 out of 10. Note that the
source of participants makes it likely that there is some bias in
these results, but we feel that they are an interesting summary
of the voiced opinions.

Prompted for positive impressions, the participants re-
sponded with these and similar assessments: surprised it works
and recognized my handwriting, amazing, awesome, new,
interesting, cool idea, intuitive, interesting, has potential, cool
and fun, innovative, natural, wonderful idea, much better than
handwriting on a touchscreen, definitely better than voice
recognition.

Prompted for negative impressions, the participants re-
sponded with these and similar assessments: smartphone is
bulky/clunky/big, maybe as a standalone pen it could work
better, need to improve moving the hand, needs a surface,
awkward to hold the phone like this, difficult for long words,
cannot beat speed of other input methods for me, there’s a
learning curve, quality needs to be improved, a bit difficult.

When asked about situations in which this input method
could be particularly useful, the answers included: taking of
digital notes quickly (with and without handwriting recogni-
tion), e.g. in school or for a quick note; when too noisy for
speech recognition; when using the touchscreen is difficult
(wet or sticky fingers); for storing sketches; just on a pen
that is paired with a smart-phone; recording signatures; kids’
drawings.

While the absolute writing area of the GyroPen approach
is about the same size as a phone screen, the thickness of
fingers makes it difficult to write as small as with GyroPen.
Therefore, users had the impression that with GyroPen there



IEEE TRANSACTION ON HUMAN-MACHINE SYSTEMS 8

is more space. The high accuracy of GyroPen easily allows
writing with a letter height of about 5mm. This is smaller than
most people can write with their finger tip on a touchscreen.

In summary, while there is certainly room for improve-
ment, most participants viewed GyroPen as an interesting and
promising application.

C. User study: writing the full alphabet

To evaluate more parameters of the proposed input method, we
performed a second experiment with two users who had used
the GyroPen system in the past and had a good understanding
of how it works.

In this experiment the task was to write 26 common English
words3, one starting with each letter of the English alphabet,
both starting in lower and upper case. The users were asked
to write each of the 52 words ten times in sequence with
GyroPen. During this experiment we measured the character
error rate (CER) (Fig. 10) and writing speed. For comparison,
we also asked the users to write each word once with a finger
on a touchscreen for normal handwriting recognition.

During this experiment both users improved their writing
skills: when writing a word for the first time, the users
had about 40% CER. The CER dropped to about 28% in
the second trial, and after ten trials the users averaged at
about 18% CER. For comparison the same users obtained
between 5% and 7% CER when using normal handwriting.
This suggests that some of the errors that users make are
due to an imperfect recognition system but that a certain
amount of errors are introduced through using GyroPen. As the
handwriting recognition system was trained on conventional
handwriting input, we suspect that this gap could be closed
further by (a) adding GyroPen training data to the recognition
system or (b) adjusting the GyroPen reconstruction to let the
output resemble conventional handwriting even more, or both.

Regarding writing speed, user 1 needed an average of 3.6s
to write each word, user 2’s average was 3.1s. In comparison,
using normal handwriting input both users needed slightly
more than 1s to write the words on average. The measurements
show no significant change in writing speed during the ten
trials.

We also analyzed a potential dependence between the error
rate and the writing speed by measuring the correlation be-
tween normalized writing speed (per word per user) and CER
and found a correlation coefficient of 0.07, which indicates
that the dependence is very small if there is a dependence at
all. The same result is obtained when comparing the average
CER on words that were written faster than the median speed
(per word per user) which is the same as the CER on words
that were written slower up to the third significant digit. Note
however, that these experiments have been performed with just
two users and thus the results may not hold in a large user
study.

Fig. 11 shows a comparison of normal writing styles of
the two users with their writing styles using GyroPen for
selected words. It is interesting to observe that some of the
characteristics of the users’ handwriting styles are preserved,

3and; been; can; day; even; for; game; have; issue; job; know; long; more;
new; one; play; quick; run; some; the; under; very; was; xenon; year; zone
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Fig. 10. Average CER for the ten trials of writing the 52 words for the
second user study.

KDQGZULWLQJ��XVHU�� *\UR3HQ��XVHU�� KDQGZULWLQJ��XVHU�� *\UR3HQ��XVHU��

JDPH
ZH
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NQRZ
NQRZ ERUURZ NQHZ
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SOD\

SOD\
SOD\ SOD\

Fig. 11. Writing styles of two users using normal handwriting on a
mobile phone touchscreen and using GyroPen. The recognition result of the
handwriting recognition system is shown under the samples.

e.g. the characteristic shapes of the loops in ’g’ and ’y’ seem to
differ more between writers than between recording methods.

Further, the examples show how the handwriting recognition
system makes some mistakes on GyroPen samples that are
clearly legible for a human. We suspect the difference to be
due to increased slant and slope of the recorded samples and
also partially due to a missing reference frame.

D. Non-Latin script input

To evaluate if the GyroPen approach is applicable to other
scripts, we performed the following experiment: We switched
the handwriting recognizer language to Chinese and tried to
write a few Chinese characters. Recognizing these characters
worked surprisingly well using a cursive writing style. We
did not need to apply any additional tuning except disabling
the slope correction. Examples of writing trajectories and
recognized characters are shown in Fig. 12.

日 木 凹 了 口

Fig. 12. Writing Chinese characters. Reconstructed writing paths (top) and
recognition results of the Chinese handwriting recognition engine (bottom).
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VII. CONCLUSION & OUTLOOK

We have presented GyroPen, a method that reconstructs a
user’s writing path from the inertial sensors of a phone
and have shown that this is a promosing approach toward
handwriting with the phone. We describe the approaches used
for high-accuracy writing-path reconstruction and show that
the reconstructed writing paths are accurate enough to be
recognized by an off-the-shelf handwriting recognition engine
without the need for special tuning. In a first proof-of-concept
experiment the majority of the participants reacted positively
to the approach and could use it after a learning period of
just a few minutes. In a second experiment we observed that
the method can be used to write all letters with acceptable
accuracy after some practice. We have shown that the system
is an interesting prototype aiming to enable handwriting with
the phone rather than on the phone for an intuitive experience
for text entry into mobile phones which will open unique
applications in the future.

GyroPen could be improved by explicitly handling pen-
up strokes, for instance using a sensor-fusion approach of
gyroscopes and accelerometers or by training a handwriting
recognition system that is fully invariant to pen-up strokes.

The proposed method has the advantage that it works on
smart phones without any modification to the hardware. If
it was possible to add additional sensors to the phones, a
similar user experience could be obtained e.g. by building a
small trackball or an optical mouse sensor into the phones
writing corner. Another alternative to using the inertial sensors
would be to use computer vision techniques with the built-
in camera to reconstruct the phone movements similar to
TinyMotion [31]. This would also work without additional
sensors but might be problematic if the writing surface is very
homogeneous and thus there would be no features to track.
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