
A Convnet for Non-Maximum Suppression

Jan Hosang, Rodrigo Benenson, Bernt Schiele

Max-Planck Institute for Informatics

Abstract. Non-maximum suppression (NMS) is used in virtually all
state-of-the-art object detection pipelines. While essential object detec-
tion ingredients such as features, classifiers, and proposal methods have
been extensively researched surprisingly little work has aimed to sys-
tematically address NMS. The de-facto standard for NMS is based on
greedy clustering with a fixed distance threshold, which forces to trade-
off recall versus precision. We propose a convnet designed to perform
NMS of a given set of detections. We report experiments on a synthetic
setup, crowded pedestrian scenes, and for general person detection. Our
approach overcomes the intrinsic limitations of greedy NMS, obtaining
better recall and precision.

1 Introduction
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Fig. 1: GreedyNMS produces false
positives and prunes true positives,
while our proposed Tnet correctly lo-
calize even very close digits. First to
last row: oMNIST image, input score
map, GreedyNMS IoU > 0.3, and
Tnet IoU & S(1, 0→ 0.6).

The bulk of object detection pipelines are
based on three steps: 1) propose a set
of windows (via sliding window or ob-
ject proposals), 2) score each window via
a trained classifier, 3) remove overlap-
ping detections (non-maximum suppres-
sion). DPM [8] and R-CNN [12, 11, 25]
follow this approach. Both object propos-
als [14] and detection classifiers [28] have
received enormous attention, while non-
maximum suppression (NMS) has been
seldom addressed. The de-facto standard
for NMS consists of greedily merging the
higher scoring windows with lower scor-
ing ones if they overlap enough (e.g.
intersection-over-union IoU>0.5), which
we call GreedyNMS in the following.

GreedyNMS is popular because it is conceptually simple, fast, and for most
tasks results in satisfactory detection quality. Despite its popularity, it has im-
portant shortcomings. GreedyNMS trades off precision versus recall. If the IoU
threshold is too large (too strict) then not enough surrounding detections are
suppressed, high scoring false positives are introduced and precision suffers. If
the IoU threshold is too low (too loose) then multiple true positives are merged
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together and the recall suffers. For any IoU threshold, GreedyNMS is sacrific-
ing precision or recall (as shown experimentally in §4). One can do better than
this by leveraging the full signal of the score map (statistics of the surrounding
detections) rather than blindly applying a fixed policy everywhere in the image.

Current object detectors are becoming surprisingly effective on both general
(e.g. Pascal VOC, COCO) and specific object detection (e.g. pedestrians, faces).
The oracle analyses for “perfect NMS” from [14, table 5] and [23, figure 12] both
indicate that NMS accounts for almost a quarter of the remaining mistakes.

Instead of doing hard pruning decisions as GreedyNMS, we design our net-
work to make soft decisions by re-scoring (re-ranking) the input detection win-
dows. Our re-scoring is final, and no post-processing is done afterwards, thus the
resulting score maps must be very “peaky”. We call our proposed network “Ty-
rolean network”, abbreviated Tnet. (Tyrolean because “it likes to see peaks”.)

Contribution We are the first to show that a convnet can be trained and used
to overcome the limitations of GreedyNMS. Our experiments demonstrate that,
across different occlusion levels, the Tyrolean network (Tnet) performs strictly
better than GreedyNMS at any IoU threshold.

As an interesting scenario for NMS, we report results for crowded pedestrian
scenes and general person detection. Our Tnet can operate solely over detection
boxes (like GreedyNMS), and does not use external training data. Furthermore,
Tnet provides better results than auto-context [37]. We consider our results a
proof of concept, opening the door for further exploration.

1.1 Related work

Clustering detections The decade old greedy NMS (GreedyNMS) is used in pop-
ular detectors such as V&J [39], DPM [8], and is still used in the state-of-the-art
R-CNN detector family [12, 11, 25]. Alternatives such as mean-shift clustering
[5, 42], agglomerative clustering [2], and heuristic variants [30] have been con-
sidered, but they have yet to show consistent gains. Recently [35, 27] proposed
principled clustering approaches that provide globally optimal solutions, however
the results reached are on par, but do not surpass, GreedyNMS.

Linking detections to pixels The Hough voting framework enables reasoning
amongst conflicting detections by linking the detections to local image evidence
[18, 1, 17, 41]. Hough voting itself, however, provides low detection accuracy. [44,
4] refine detections by linking them with semantic labelling; while [43] side-steps
NMS all-together by defining the detection task directly as a labelling problem.
These approaches arguably propose a sound formulation of the detection prob-
lem, however they rely on semantic labelling/image segmentation. Our system
operates directly on bounding box detections.

Co-occurrence To better handle dense crowds or common object pairs, it has
been proposed to use specialized 2-object detectors [29, 34, 22], which then re-
quire a careful NMS strategy to merge single-object with double-object detec-
tions. Similarly, [26] adapts the NMS threshold using crowd density estimation.
Our approach is directly learning based (no hand-crafted 2-objects or density
estimators), and does not use additional image information.
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Fig. 2: Base architecture of our Tyrolean network (Tnet). Each box is a feature
map, its dimensions are indicated at its bottom, the coloured square indicates
the convolutional filters size, the stride is marked next to the downward arrow.

Auto-context re-score detections using local [37, 3] or global [38] image informa-
tion. Albeit such approaches do improve detection quality, they still require a
final NMS processing step. Our convnet does re-score detections, but at the same
time outputs a score map that does not require further processing. We provide
experiments (in §4) that show improved performance over auto-context.

Convnets and NMS Few works have linked convnets and NMS, detection con-
vnets are commonly trained unaware of the NMS post-processing step. [40] pro-
posed an NMS-aware training loss, making the training truly end-to-end. The
used NMS is greedy and with fixed parameters. [32] proposes to use an LSTM
to decide how many detections should be considered in a local region. The de-
tections amongst the regions are then merged via traditional NMS. In contrast,
our convnet requires no post-processing. To the best of our knowledge our Tnet
is the first network explicitly designed to replace the final NMS stage.

In §2 we describe our base network, §3 explores its use in a synthetic setup.
Then §4 reports results over DPM [8] detections in crowds datasets (small scale
variance), and finally results over FasterRCNN [25] on Pascal VOC people [7].

2 Base Tyrolean network

The main intuition behind our proposed Tyrolean network (Tnet) is that the
score map of a detector together with a map that represents the overlap between
neighbouring detections contains valuable information to perform better NMS
than GreedyNMS (see figure 1, second row). Our network is a traditional convnet
but with access to two slightly unusual inputs (described below), namely score
map information and IoU maps. Figure 2 shows the overall network. In our base
Tnet the first stage applies 512 11 × 11 filters over each input layer, and 512
1 × 1 filters are applied on layers 2 and 3. ReLU non-linearities are used after
each layer but the last one. Neither max-pooling nor local normalization is used.

The base network is trained and tested in a fully convolutional fashion. It
uses the same information as GreedyNMS, and does not access the image pixels
directly. The required training data are only a set of object detections (before
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NMS), and the ground truth bounding boxes of the dataset. We focus on the
single class case and consider exploiting multi-class information future work.

Input grid As preprocessing all detections in an image are mapped into a 2d grid
(based on their centre location). If more than one detection falls into the same
cell, we keep only the highest scoring detection. Each cell in the grid is associated
with a detection bounding box and score. We use cells of 4 × 4 pixels, thus an
input image of size W×H will be mapped to input layers of size w×h = W/4×H/4.
Since the cells are small, mapping detections to the input grid has minimal
impact on the NMS procedure. In preliminary experiments we validated that: a)
we can at least recover the performance of GreedyNMS (applying GreedyNMS
over the input grid provides the same results as directly applying GreedyNMS),
b) the detection recall stays the same (after mapping to the input grid the overall
recall is essentially identical to the raw detections).
This incarnation of Tnet can handle mild changes in scale amongst neighbouring
detections. §4 reports experiments with detections over a 3× scale range. In §4
we also explain how to adapt our approach to general person detection (Pascal
VOC [7]), with large scale and aspect ratio variance.

IoU layer In order to reason about neighbouring detection boxes (or segments)
we feed Tnet with IoU values. For each location we consider a 11 × 11 = 121
neighbourhood, thus the input IoU layer has w×h×121 values. Together the cell
size and neighbourhood size should provide the Tnet with sufficient information
about surroundings of a detection, where this choice depends on the object sizes
in the image and the expected object density and thus are application dependent.

Score maps layer To reason about the detection confidence, we feed Tnet with
the raw detection score map (once mapped to the input grid). The NMS task
involves ranking operations which are not easily computed by linear and ReLU
(max(·, 0)) operators. To ease the task we also feed the Tnet with score maps re-
sulting from GreedyNMS at multiple IoU thresholds. All score maps are stacked
as a multi-channel input image and feed into the network. S(τ) denotes a score
map resulting from applying GreedyNMS with IoU≥ τ , S(τ1, τ2) denotes a two
channels map (S(τ1) and S(τ2) stacked). Note that S(1) returns the raw detec-
tion score map. Our base Tnet uses S(1, 0.3) which has dimensionality w×h×2
(see figure 2). The convolutional filters applied over the score maps input have
the same size as the IoU layer neighbourhood (11× 11 cells).

Tnet is then responsible for interpreting the multiple score maps and the IoU
layer, and make the best local decision. Our Tnet operates in a fully feed-forward
convolutional manner. Each location is visited only once, and the decision is final.
In other words, for each location the Tnet has to decide if a particular detection
score corresponds to a correct detection or will be suppressed by a neighbouring
detection in a single feed-forward path.

Parameter rules of thumb Figure 2 indicates the base parameters used. Prelimi-
nary experiments indicated that removing top layers has a clear negative impact
on the network performance, while the width of these layers is rather insensi-
tive. Having a high enough resolution in the input grid is critical, while keeping
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a small enough number of convolutions over the inputs allows to keep the num-
ber of model parameters under control. During training data augmentation is
necessary to avoid overfitting. The training procedure is discussed in §2.1, while
experimental results for some parameters variants are reported in §4.

Input variants Experiments in the next sections consider multiple input variants.
The IoU layer values can be computed over bounding boxes (regressed by the
sliding window detector) or over estimated instance segments [24]. Similarly, for
the score maps we consider different numbers of GreedyNMS thresholds, which
changes the dimensionality of the input score map layer.
In all cases we expect the Tnet to improve over a fixed threshold GreedyNMS
by discovering patterns in the detector score maps and IoU arrangements that
enable to do adaptive NMS decisions.

2.1 Training procedure

Typically detectors are trained as classifiers on a set of positive and negative win-
dows, determined by the IoU between detection and object annotation. When
doing so the spatial relation between detector outputs and the annotations is
neglected. We adopt the idea from [32] of computing the loss by matching de-
tections to annotations, and train the network to predict new detection scores
that are high for matched detections and low everywhere else. In contrast to the
conventional wisdom of training the detector to have a smooth score decrease
around positive instances, we declare a detection right next to a true positive to
be a negative training sample. Processing detections independently would hurt
generalisation, but Tnet has access to neighbouring detections circumventing
this problem. This is necessary because our network must itself perform NMS.

Training loss Our goal is to reduce the score of all detections that belong to the
same person, except exactly one of them. To that end, we match every annotation
to the highest scoring detection that overlaps at least 0.5 IoU. This determines
the set of positives, while all other detections are negative training examples.
This yields a label yp for every location p in the input grid (see previous section).
Since background detections are much more frequent than true positives, it is
necessary to weight the loss terms to balance the two. We use the weighted
logistic loss and choose the weights so that both classes have the same weight
per frame. We also consider setting weights to balance classes across the full
dataset and giving lower weights for highly occluded samples, see §4.1.

The model is trained from scratch, randomly initialized with MSRA [13], and
optimized via Adam [16]. All experiments are implemented with Caffe [15]. See
supplementary material for details of the training loss and training parameters.

As pointed out in [20] the threshold for GreedyNMS requires to be carefully
selected on the validation set of each task, the commonly used default IoU > 0.5
can severely underperform. Other NMS approaches such as [35, 27] also require
training data to be adjusted. When maximizing performance in cluttered scenes
is important, training a Tnet is thus not a particularly heavy burden. Training
our base Tnet on un-optimized CPU and GPU code takes a day.
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Fig. 3: oMNIST test set detection results.

Method AR

GreedyNMS
bboxes IoU > 0.3 54.3%
DeepMask segments 52.0%

Tnet variants
IoU & S(1, 0→0.6) 59.6%
IoU & S(1, 0.3) 57.9%
IoU & S(1) 36.5%
S(1) 33.9%

Table 1: PETS val. set results.
Base Tnet is underlined.

3 Controlled setup experiments

NMS is usually the last stage of an entire detection pipeline. Therefore, in an
initial set of experiments, we want to understand the problem independent of a
specific detector and abstract away the particularities of a given dataset.

If objects appeared alone in the images, NMS would be trivial. The core issue
for NMS is deciding if two local maxima in the detection score map correspond
to one or multiple objects. To investigate this core aspect we create the oMNIST
(“overlapping MNIST”) toy dataset. This data does not aim at being particu-
larly realistic, but rather to enable a detailed analysis of the NMS problem.
Each image is composed of one or two off-centre MNIST digits with IoU ∈
[0.2, 0.6]. We mimic a detector by generating synthetic perturbed score maps.
Albeit noisy, the detector is “ideal” because its detection score remains high de-
spite strong occlusions. The supplementary material and figure 1 show examples
of the generated score maps and corresponding images. By design GreedyNMS
will have difficulties handling such cases (at any IoU threshold). We generate a
training/test split of 100k/10k images (fix across experiments).

Other than score maps our convnet uses IoU information between neigh-
bouring detections (like GreedyNMS). Our experiments cover using the perfect
segmentation masks for IoU (ideal case), noisy segmentation masks, and the
sliding window bounding boxes.

3.1 Results

Results are summarised in figure 3. Curves are scored via AR; the average recall
on the precision range [0.5, 1.0]. The evaluation is done using the standard Pascal
VOC protocol, with IoU > 0.5 [7].

GreedyNMS As can be seen in figure 3 varying the IoU thresholds for Gree-
dyNMS trades off precision and recall. The best AR that can be obtained with
GreedyNMS is 60.2% for IoU > 0.3. Example score maps for this method can
be found in figure 1, third row.
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Upper bound As an upper bound for any method relying on score map informa-
tion we calculate the overlap between neighbouring hypotheses based on perfect
segmentation masks (available in this toy scenario). With perfect overlaps and
perfect scores GreedyNMS returns perfect results. Based on our idealized but
noisy detection score maps the upper bound reaches 90.0% AR. In §4 we report
experiments using segmentation masks estimated from the image, which results
in inferior performance.

Base Tnet Using the same information as GreedyNMS with bounding boxes,
our base Tnet reaches better performance for the entire recall range (see figure
3), S(1, 0.3) indicates the score maps from GreedyNMS with IoU > 0.3 and ≥ 1,
i.e. the raw score map. In this configuration Tnet obtains 79.5% AR, clearly
superior to GreedyNMS. This shows that, at least in a controlled setup, a convnet
can indeed exploit the available information to overcome the limitations of the
popular GreedyNMS method.

Instead of picking a specific IoU threshold to feed Tnet, we consider IoU &
S(1, 0→ 0.6), which includes S(1, 0.6, 0.4, 0.3, 0.2, 0.0). As seen in figure 3, not
selecting a specific threshold results in the best performance; 86.0% AR. If we
remove GreedyNMS score maps and only provide the raw score map (IoU & S(1))
performance decreases significantly. As soon as some ranking signal is provided
(via GreedyNMS score maps), our Tnet is able to learn how to exploit best the
information available. Qualitative results are presented in figure 1, bottom row.

Auto-context Importantly we show that IoU & S(1) improves over S(1) only.
(S(1) is the information exploited by auto-context methods, see §1.1). This shows
that the convnet is learning to do more than simple auto-context. The detection
improves not only by noticing patterns on the score map, but also on how the
detection boxes overlap.

4 Person detection experiments

After the proof of concept in a controlled setup, we move to a realistic pedestrian
detection setup. We are particularly interested in datasets that show diverse
occlusion where NMS is non-trivial. We decided for the PETS dataset [9], which
exhibits diverse levels of occlusion and provides a reasonable volume of training
and test data. We use 5 sequences for training, one sequence for validation and
testing (23k, 4k, 10k annotations respectively, see supplementary material for
details). PETS has been previously used to study person detection [36], tracking
[21], and crowd density estimation [33]. Additionally we test the generalization
of the trained model on the ParkingLot dataset [31], and the applicability to
general person detections on Pascal VOC [7]. Figure 6 shows example frames.

Standard pedestrian datasets such as Caltech [6] or KITTI [10] average less
than two pedestrians per frame, making close-by detections a rare occurrence. In
PETS and ParkingLot > 50% of pedestrians have some occlusion, and about ∼
20% have significant occlusion (IoU>0.4). Pascal presents fewer occlusion cases,
people being the class where it is most frequent. See supplementary material for
details on these datasets.
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Person detector In this work we take the detector as a given. For the PETS
experiments we use the baseline DPM detector from [36]. We are not aware of a
detector (convnet or not) providing better results on PETS-like sequences (we
considered some of the top detectors in [6]). Importantly, for our exploration the
detector quality is not important per-se. As discussed in §3 GreedyNMS suffers
from intrinsic issues, even when providing an idealized detector. In fact Tnet
benefits from better detectors, since there will be more signal in the score maps.
We thus consider our DPM detector a fair detection input. We use the DPM
detections after bounding box regression, but before any NMS processing.

Person segments In §4.1 we report results using segments estimated from the
image content. We use our re-implementation of DeepMask [24], trained on the
Coco dataset [19]. See supplementary material for details and qualitative results.
We use DeepMask as a realistic example of what can be expected from modern
techniques for instance segmentation.

4.1 Results

Our PETS results are presented in table 1 (validation set) and figure 4 (test set).
Qualitative results are shown in figure 6. The supplementary material provides
additional val & test results.

Boxes Just like in the oMNIST case, the GreedyNMS curves in figure 4 have a
recall versus precision trade-off. We pick IoU>0.3 as a reference threshold.

Segments GreedyNMS should behave best when the detection overlap is based
on the visible area of the object. We compute DeepMask segments over DPM
detection, feed these in GreedyNMS, and select the best IoU threshold for the
validation set. Table 1 shows results slightly below the bounding boxes case.
Although many segments are rather accurate, they drop in quality when heavier
occlusion is present. In theory using segments should improve GreedyNMS, in
practice they hurt more than they help.



A Convnet for Non-Maximum Suppression. 9

Auto-context For the S (1) entry in table 1 only the raw detection score map is
feed to Tnet (same nomenclature as §3.1). Since performance is lower than other
variants (e.g. IoU & S (1)), this shows that our approach is exploiting available
information better than just doing auto-context over DPM detections.

Tnet Both in validation and test set our trained network with IoU & S (1, 0.3)
input provides a clear improvement over vanilla GreedyNMS. Just like in the
oMNIST case, the network is able to leverage patterns in the detector output to
do better NMS than the de-facto standard GreedyNMS method.
Table 1 reports the results for a few additional variants. IoU & S(1, 0→ 0.6)
shows that it is not necessary to select a specific IoU threshold for the input
score map layer. Given an assortment (S(1, 0.6, 0.4, 0.3, 0.2, 0.0)) the network
will learn to leverage the information available.
Using a relaxed loss that decreases weight of hard examples (peaks on the
background and strong occlusions) helps further improve the results, moving
from 57.9% to 58.9% AR. Weighting classes equally over the full dataset (global
weighting) instead of frame-by-frame gives a mild improvement from 57.9% to
58.0% AR. See supplementary material for details on these loss variants.

Strong Tnet We combine the best ingredients identified on the validation set into
one strong model. We use IoU & S(1, 0→0.6), relaxed loss, and global weight-
ing. Figure 4 shows that we further improve over the base Tnet from 59.5% to
71.8% AR on the PETS test set. The gap between base Tnet and GreedyNMS is
smaller on the test set than on validation, because test set has lighter occlusions.
Still our strong Tnet provides a consistent improvement over GreedyNMS.
In the supp. material we experimentally show that Strong Tnet improves Gree-
dyNMS for all occlusions levels. Our network does not fit to a particular range
of occlusions, but learns to handle all of them with comparable effectiveness.
At test time Tnet takes ∼200 milliseconds per frame (all included).

ParkingLot results To verify that our Tnet can generalize beyond PETS, we
run the same DPM detector as on the PETS experiment over the ParkingLot
sequence and do NMS using the networks trained on PETS training set only.
Results show that Tnet improves from 80.3% to 83.3% AR over the best Gree-
dyNMS threshold of IoU > 0.3. Even though Tnet was not trained on this
sequence we see a similar result as on the PETS dataset. Not only does our
Strong Tnet improve over the best GreedyNMS result, but it improves over the
upper envelope of all GreedyNMS thresholds (similar trend as figure 4). See see
detailed curves in supplementary material and qualitative results in figure 6.

Pascal results Pascal VOC [7] contains less occlusion but is more challenging
with respect to appearance, scale, and aspect ratio variance. We focus on the
“people” class which offers the highest diversity in occlusion. As a base detector
we use the publicly available FasterRCNN [25]. The small variance in perfor-
mance of the GreedyNMS swipe in figure 5 shows that this data contains fewer
occlusions than PETS.
Tnet is trained on Pascal ’07 trainval and tested on the test set. To adapt
the Tnet to multiple scales and aspect ratio we switch from the fully convo-
lutional approach to a detection-centric representation. Instead of a fixed-size
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neighbourhood grid we adapt its scale and aspect ratio to each detection box
being re-scored. We also use the image features. See details in the supplemen-
tary material. After tuning the training parameters, Base Tnet matches the best
GreedyNMS with 80.5% AP (figure 5). Strong Tnet matches the upper envelope
of all GreedyNMS thresholds, improving the results to 81.2% AP.

5 Conclusion

We have discussed the limitations of GreedyNMS in detail and presented exper-
iments showing its recall versus precision trade-off. For the sake of speed and
simplicity GreedyNMS disregards most of the information available in the detec-
tor response. Our proposed Tyrolean network (Tnet) mines the patterns in the
score map values and bounding box arrangements to surpass the performance
of GreedyNMS. On the person detection task, our final results show that our
approach provides, compared to any GreedyNMS threshold, both high recall and
improved precision. These results confirm that Tnet can overcome the intrinsic
limitations of GreedyNMS, while keeping practical test time speeds. We consider
the reported results a proof of concept, opening the door for further extensions.

Current detection pipelines consist of a convnet and a hard-coded NMS pro-
cedure. Replacing the NMS with a Tnet opens the possibility of true end-to-end
training of object detectors and we reckon that significant improvements can be
obtained by replacing NMS with a Tnet.

P
E

T
S

P
a
rk

in
g
L

o
t

P
a
sc

a
l

(a) GreedyNMS

True positive
False negative
False positive

(b) Strong Tnet

Fig. 6: Qualitative detection results of GreedyNMS and Strong Tnet (both op-
erating at same recall). Tnet is able to suppress false positives as well as recover
recall that is lost with GreedyNMS. See supp. material for additional results.
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1 Content

This supplementary material provides expanded explanations and describes im-
plementation details, it provides as well additional quantitative and qualitative
results. In particular:

– section 2 discusses the limitation of GreedyNMS, and why it trades-off pre-
cision versus recall,

– section 3 details the training loss and parameters,
– section 4 describes the used datasets,
– section 5 explains in more detail how we modify the Tnet architecture to

handle larger scale and aspect ratio variance,
– section 6 details our DeepMask re-implementation,
– section 7 provides additional result tables and curves from our main experi-

ments,
– and section 8 presents corresponding qualitative results.
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2 Precision versus recall GreedyNMS threshold

This section contains a more in-depth explanation of the fundamental limitation
of GreedyNMS that did not find space in the main paper.

Consider the example figure 1. A narrow suppression correctly returns detec-
tions for the two objects, but also introduces a high scoring false positive that
actually has a higher score than the lower scoring detection. Making the sup-
pression threshold wider decreases the score of the false positive, but eventually
also removes the correct, lower scoring detection. In this example there is no one
threshold that resolves this problem and GreedyNMS is doomed to fail.

Note that this situation does not only arise inside a single image. The problem
of a high scoring false positive surviving suppression can happen on a different
image than the object that is wrongly suppressed due to high overlap. In general,
whenever the merge criterion is too narrow false positives will be introduced (low
precision, middle case of figure 1), when the merge criterion is too wide there
are missed detections (low recall, right case). No one threshold will be suitable
across different occlusion levels.

The main paper, as well as figures 6, 7, and 9 confirm experimentally the
precision versus recall trade-off of GreedyNMS.

Ground truth Low recall

Sc
or

e

1D image plane

Ground truth
NMS region
True positive
False positive
False negative

Low precision

Fig. 1: 1D illustration of the GreedyNMS shortcomings. Black dots indicate true
objects, grey curve is the detector response, green dots are true positives, red
dots/circles are false positives/negatives.
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3 Training procedure details

Training loss Our goal is to reduce the score of all detections that belong to
the same person, except exactly one of them. To that end, we match every
annotation the to highest scoring detection that overlaps at least 0.5 IoU. This
yields a label yp for every location p in the input grid (see section 2, input grid).
Since background detections are much more frequent than true positives, it is
necessary to weight the loss terms to balance the two. We use the weighted
logistic loss

L(x) =
∑

p∈G
wyp

log
(

1 + e−ypf(xp)
)

(1)

where xp is the feature descriptor at position p and f(xp) is the prediction of the
network at position p. The weights wyp are chosen so that both classes have the
same weight either per frame or globally on the entire dataset (denoted by wf

and wg respectively). Since we have a one-to-one correspondence between input
grid cells and labels it is straight forward to train a fully convolutional network
to minimize this loss.

Relaxed loss It is impossible for the network to recover from certain mistakes
that are already present in the input detections. For example, false positives on
the background might be impossible to tell apart from true positives since the
network does not have access to the image and only sees detection scores and
overlaps between detections. On the other hand detections of distinct objects
with high overlap can be hard to detect since the detections can assign low
scores to barely visible objects. It proved beneficial to assign lower weight to
these cases, which we call the relaxed loss. We declare negative samples to be
hard if the corresponding detections are not suppressed by a 0.3 NMS and true
positives to be hard if they are suppressed by a 0.3 NMS on the annotations
with the matched detection scores. The weight of hard examples is decreased by
a factor of r. Our base Tnet uses r = 1 (non-relaxed) with weighting strategy
wf , and section 7.2 reports results for other r values and wg.

3.1 Training parameters

PETS The model is trained from scratch, randomly initialized with MSRA [6],
and optimized with Adam [8]. We use a learning rate of 10−4, a weight decay
of 5 · 10−5, a momentum of 0.9, and gradient clipping at 1 000. The model is
trained for 100 000 iterations with one image per iteration. All experiments are
implemented with the Caffe framework [7].

Since detectors tend to have non-zero detection scores in most areas of the
image, the training volume is proportional to number of pixels not the number of
images. Thus we can adequately train our Tnet with only a few hundred frames.

Pascal VOC For Pascal, since we are using a different architecture, parameters
are slightly different. We weight decay of 5 · 10−3 and for 10 000 iterations with
two images per iteration.
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4 Dataset details
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Fig. 2: Distribution of IoU overlap be-
tween ground truth annotations, on the
datasets discussed in the paper.

Figure 2 shows the overlap distri-
bution of the different datasets con-
sidered in this paper. Most annota-
tions on ParkingLot and in particu-
lar on PETS have some small amount
of occlusion. People in Pascal VOC
’07 have some occlusion in half of
the cases, in Caltech only 20% of
the pedestrians. For PETS and Park-
ingLot, about 20% of the test set have
significant occlusion (IoU > 0.4). On
Pascal only about 5% of the test set
has significant occlusion, on Caltech
even less. Due to these statistics we
focus our analysis on PETS.

4.1 oMnist

If all objects appeared alone in the images, NMS would be trivial. The core issue
for NMS is deciding if two local maxima in the detection score map correspond
to only one object or to multiple ones. To investigate this core aspect we create
the oMNIST (“overlapping MNIST”) toy dataset. This data does not aim at
being particularly realistic, but rather to enable a detailed analysis of the NMS
problem.

Each image is composed of one or two MNIST digits. To emphasise the oc-
clusion cases, we sample 1/5 single digits, and 4/5 double digit cases. The digits
are off-centre and when two digits are present they overlap with bounding box
IoU ∈ [0.2, 0.6]. We also mimic a detector by generating synthetic score maps.
Each ground truth digit location generates a perturbed bump with random mag-
nitude in the range [1, 9], random x-y scaling, rotation, a small translation, and
additive Gaussian noise. Albeit noisy, the detector is “ideal” since its detection

Im
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re
m

a
p

Fig. 3: Example data from our controlled experiments setup. The convnet must
decide if one or two digits are present (and predict is their exact location) while
using only a local view of score and IoU maps (no access to the input image).
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score remains high despite strong occlusions. Figure 3 shows examples of the
generated score maps and corresponding images. By design GreedyNMS will
have difficulties handling such cases (at any IoU threshold).

Other than score maps our convnet uses IoU information between neigh-
bouring detections (like GreedyNMS). In our experiments we consider using the
perfect segmentation masks for IoU (ideal case), noisy segmentation masks, and
the sliding window bounding boxes.

We generate a training/test split of 100k/10k images, kept fix amongst dif-
ferent experiments.

4.2 PETS

We use 8 of the PETS sequences [3], ∼200 frames each, that we split in 5 for
training (S1L1-1, S1L1-2, S1L2-1, S1L2-2, S2L1, and S3MF1), 1 for validation
(S2L3) and 1 for testing (S2L2). The different videos show diverse densities of
crowds. As shown in figure 2 more than 40/50/25% of the train/val/test data
has an IoU > 0.3 with another ground truth box.
Since detectors tend to have non-zero detection scores in most areas of the image,
the training volume is proportional to number of pixels not the number of images.
Thus we can adequately train our Tnet with only a few hundred frames.
PETS has been previously used to study person detection [14], tracking [10],
and crowd density estimation [13]. Standard pedestrian datasets such as Caltech
[1] or KITTI [4] average less than two pedestrian per frame, making close-by
detections a rare occurrence.

Due to its size and challenging occlusion statistics we consider PETS a suit-
able dataset to explore NMS. Figure 10 shows example frames.

4.3 ParkingLot

We use the first ParkingLot [12] sequence to evaluate the generalization capa-
bilities of the model. We use an improved set annotations, provided every third
frame (250 frames in total) and rectify the mistakes from the original annota-
tions. Compared to PETS the sequence has similar overlap statistics than the
PETS test set (see figure 2), but presents different background and motion pat-
terns. Figure 11 shows examples from the dataset.

4.4 Pascal VOC

Pascal VOC ’07 [2] is a general object detection benchmark that contains 20
classes, including people. People in this dataset are not just pedestrians but
appear in many different scenes and activities. This leads to extreme variations
in scale and aspect ratio. Unfortunately the dataset is not very crowded (see 2).
Nevertheless we use this dataset to demonstrate how the Tnet can be adapted
to handle larger variance in scale and aspect ratio.
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We opt for Pascal VOC ’07, because the python implementation of Faster-
RCNN “py-faster-rcnn” contains a pre-trained detector for this dataset. Evalua-
tion is done with the official Pascal evaluation toolkit, except we recompute the
exact area under the curve for the AP computation as done in “py-faster-rcnn”.

5 Handling scale and aspect ratio

This section explains how we adapted the Tnet to Pascal VOC to handle big
scale and aspect ratio variations. The big scale differences are a problem with the
fully convolutional architecture explained in the main paper, section 2, because
we have a fixed convolutional filter that effectively gives the system a fixed size
context to take into account. How big should this context be? In the case of
relatively small pedestrians in PETS and ParkingLot it turns out that a context
of 44 × 44 pixels is sufficient. However in Pascal two people can be almost as
big as the entire image, the centre points of their bounding boxes can be several
hundred pixels apart, so the context needs to be much bigger in that case.

Input grid The idea to remedy this issue is to adapt the neighbourhood size to
the size and aspect ratio of the detection that is to be rescored, so big objects
have a larger neighbourhood than small objects. Since we want to use the same
model for big and small objects, the representation has to have the fixed size,
so we use an 11 × 11 grid to represent the neighbourhood (defined to be twice
the size of the object) just like in the ordinary Tnet. In general detections in
the image have different sizes, requiring input grids of different resolutions. We
decide to switch to a detection-centric representation and generate an input
grid for each detection individually, which is feasible because the FasterRCNN
outputs relatively few detections that were already processed individually (as
opposed to fully convolutionally). The assignment of detections to the input
grid is done as usual by picking that maximum scoring detection for which the
centre falls into each grid cell.

Note that the network and loss is straight forward to transfer to the detection-
centeric setting. The only modifications are that we used 128 filters instead of
512 filters, for speed, since we observed no noticeable drop in performance, and
that we give the positive class a weight of 0.1 (compared to 0.5 on PETS), since
Pascal is much less crowded.
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6 DeepMask

To obtain segmentation masks on PETS, we train our reimplementation of Deep-
Mask [11] for all classes on the COCO training set. Our implementation is based
on the FastRCNN network [5]. To generate instance segmentations on PETS, we
upscale the image by a factor of 2× and predict segments on detections. Figure
4 shows mask predictions for annotations on the PETS test set. It works well
in low occlusion cases (left and middle column), however, under heavy occlusion
it makes mistakes by collapsing the segment or merging the occluding and the
occluded person (see right-most column).

Fig. 4: Example DeepMask segmentation masks on PETS images. Pixels inside
the red area are used to predict a foreground segment inside the blue area. In
these examples, boxes are centred on ground truth annotations.
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7 Detailed results

7.1 oMnist

Figure 5 and table 1 show the results that are analysed in section 3.1 in the
main paper. Since the figure and table do not add new results, but only show an
overview of the results discussed in the paper, we do not repeat their analysis
here.
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79.5% Tnet IoU & S(1,0.3)

57.9% Tnet IoU & S(1)

50.5% Tnet S(1)

51.5% GreedyNMS > 0.0

50.7% GreedyNMS > 0.1

56.5% GreedyNMS > 0.2

60.2% GreedyNMS > 0.3

49.5% GreedyNMS > 0.4

44.3% GreedyNMS > 0.5

21.9% GreedyNMS > 0.6

Fig. 5: Detection results on controlled setup (oM-
NIST test set).

Table 1: Results from con-
trolled setup experiments.
S (·) indicates the different
input score maps.

Method AR

Upper bound
perfect masks 90.0%

GreedyNMS
bboxes IoU > 0.3 60.2%

Tnet
IoU & S(1, 0 → 0.6) 86.0%
IoU & S(1, 0.3) 79.5%
IoU & S(1) 57.9%
S(1) 50.5%

7.2 PETS Table 2: Results on PETS val-
idation set. Underlined is our
base Tnet.

Method AR

GreedyNMS
bboxes IoU > 0.3 54.3%
DeepMask segments 52.0%

Tnet variants
IoU & S(1, 0→0.6) 59.6%
IoU & S(1, 0.3), r = 0.3 58.9%
IoU & S(1, 0.3), wg 58.0%
IoU & S(1, 0.3) 57.9%
IoU & S(1) 36.5%
S(1) 33.9%

Person segments In section 4.1 of the main
paper, we report results using segments esti-
mated from the image content. We use our re-
implementation of DeepMask [11], trained on
the COCO dataset [9]. DeepMask is a network
specifically designed for objects segmentation
which provides competitive performance. Our
re-implementation obtains results of compara-
ble quality as the original; example results on
PETS are provided in the appendix section 6.
We use DeepMask as a realistic example of what
can be expected from modern techniques for in-
stance segmentation.

Tuning on the validation set Validation results
are shown in table 2 and figure 6. Using the relaxed loss described in section
3 helps to further improve the results. Amongst the parameters tried on the
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validation set, r = 0.3 provides the largest improvement. Lower r values de-
crease performance, while higher r values converge towards the default r = 1
performance (base Tnet).

Weighting classes equally on the entire dataset (wg strategy) gives a mild im-
provement from 57.9% to 58.0% AR compared to the default per frame weighting
wf . Using multiple GreedyNMS thresholds gives a significant improvement to
59.6% AR. We combine the weighted loss, global weighting, and multiple Gree-
dyNMS thresholds as Strong Tnet.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

on

59.6% Tnet IoU & S(1,0→ 0.6)

58.9% Tnet IoU & S(1,0.3),r= 0.3
58.0% Tnet IoU & S(1,0.3), wg

57.9% Tnet IoU & S(1,0.3)
36.5% Tnet IoU & S(1)
33.9% Tnet S(1)
37.8% GreedyNMS > 0.0
44.2% GreedyNMS > 0.1
50.5% GreedyNMS > 0.2
54.3% GreedyNMS > 0.3
54.2% GreedyNMS > 0.4
48.5% GreedyNMS > 0.5
37.6% GreedyNMS > 0.6

Fig. 6: Detection results on PETS validation set. Global weighting is indicated
by wg, all other curves use frame weighting.

Performance per occlusion level Figure 8 provides a more detailed view of the
results from figure 7. It compares our strong Tnet result versus the upper en-
velope of GreedyNMS over all thresholds ([0, 1]), when evaluated over different
subsets of the test set. Each subset corresponds to ground truth bounding boxes
with other boxes overlapping more than a given IoU level (see figure 2). For all
ranges, our strong Tnet improves over GreedyNMS. This shows that our network
does not fit to a particular range of occlusions, but learns to handle all of them
with comparable effectiveness.
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Fig. 7: Detection results on PETS test set. Our approach is better than any
GreedyNMS threshold and better than the upper envelope of all GreedyNMS
curves.
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Fig. 8: GreedyNMS versus Strong Tnet when evaluated over different subsets of
PETS test data, based on level of occlusion. In each subset our Tnet improves
over the upper envelope of all GreedyNMS threshold curves.
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7.3 ParkingLot

Figure 9 shows the curves of test results on the ParkingLot sequence with the
Base and Strong Tnet that have been trained on PETS. The discussion can be
found in section 4.1 in the main paper.
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Fig. 9: Detection results on the ParkingLot dataset. Tnet is better than any
GreedyNMS threshold, even though it has been trained using PETS data only.
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8 Qualitative results

Figures 10, 11, and 12 show qualitative results of our Strong Tnet for PETS,
ParkingLot, and Pascal datasets respectively. On PETS and ParkingLot TNet
provides improvement both on crowded and non-crowded areas. For Pascal we
see that Tnet is able to remove implausible false positives.

(a) GreedyNMS

True positive
False negative
False positive

(b) Strong Tnet

Fig. 10: Qualitative detection results of GreedyNMS > 0.3 and Strong Tnet over
DPM detections on PETS test set (both operating at 75% recall). Tnet is able
to suppress false positives as well as recover recall that is lost with GreedyNMS.
This is the case for both crowded and non-crowded areas.
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(a) GreedyNMS

True positive
False negative
False positive

(b) Strong Tnet

Fig. 11: Qualitative detection results of GreedyNMS > 0.3 and Strong Tnet over
DPM detections on ParkingLot dataset (both operating at 85% recall). Tnet
was trained using PETS only.

(a) GreedyNMS (b) Strong Tnet

Fig. 12: Pascal persons test set examples where Tnet improves over the best
GreedyNMS (IoU>0.5). Same colour coding as fig. 10.
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